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The DISQUAC group contribution imethod for correlating and predicting the 

thermodynamic properties of liquid mixtures (phase diagrams and related excess 

functions, Gibbs energy and enthalpy) is reviewed. Examples are given of its 

application to recently investigated mixtures, including linear or cyclic 

ketones, mono- or polychloroalkanes, cycloalkanes and n-alkanes. 

INTRODUCTION 

For separation design calculations it is essential to have analytical rela- 

tions between the thermodynamic functions and the composition of multicompo- 

nent liquid mixtures. Several well-known empirical relations can be used for 

this purpose. They contain a number of adjustable parameters to describe the 

activity coefficients in binary systems. These parameters are derived from 

experimental measurements performed using the given binary system. 

The group contribution method provides a basis for estimating properties of 

systems outside the set of investigated binaries. A single binary containing a 

specific pair of structural groups . suffices to determine the corresponding 

group parameters. These parameters can be employed to estimate the properties 

of any other binary or ~lticomponent system containing the same structu- 

ral groups. When applicable, this approach results in a considerable saving of 

experimental measurements, since the number of structural groups is much 

smaller than the number of molecular species. 
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The group contribution method is based on a general assumption relative to 

the properties of the molecules and on more specific assumptions relative to 

the solution model adopted to describe the liquid mixture. 

The general assumption may be formulated as follows (ref. 1): the molecules 

under consideration consist of given "groups" of atoms, each group being situa- 

ted in a well-defined intramolecular environment which allows the internal deg- 

rees of freedom ofthe group and the external force field around it to be inde- 

pendent of the particular kind of molecule. 

Violation of this general assumption is a cause of trivial disagreement 

between experimental and estimated values. 

According to the solution of groups concept, the interactional Gibbs energy 

G int is entirely determined by the numbers, ns of the given constituent 

groups s. Obviously, Gint must be a extensive function with respect to 

n; s. Hence 

G 
int =Z;nsG s 

where G s =dGint /dns 

(1) 

(2) 

is the chemical potential of group s in the system. We may define a group 

activity coefficient r,as 

Gs = Gi t RT In rs (3) 

where Go of pure group s. If vsi is the 
s 

is the chemical potential 

number of groups of type s in a molecule of type i and ni the number of 

moles of component i, we have 

n 
S 

= z’iVsini 

G =r 
int 9 ni (2, VsiGs' =Zini,Ui,int 

Pi,int = zs vsiGi + 2', vsiTn rs (6) 

where p. 
1,int 

is the interactional chemical potential of component i. For pure 

component i 

K,int =Zs VsiG~ + Zs VsiTn 
S 

(7) 

Hence, we obtain a general equation for the excess chemical potential of 

comoonent i 

Pi =p!,comb +I;, vsi!ln< - In r’i’) (8) 

where p: comb 
is the combinatorial excess chemical potential. 

, 
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Depending on the model used to express r', we may distinguish empirical or 

more or less founded theoretical group contribution methods. 

EMPIRICAL GROUP CONTRIBUTION METHODS. 

ASOG and UNIFAC are at present the best worked out empirical group contri- 

bution methods. 

Jhe Wilson equation is the basis of the Analytical Solution of Groups (ASOG) 

method, proposed by Derr and Ueal (ref. 2). The group coefficients are given by 

(9) 

represents two parameters 

adjusted for each pair of groups (s,t). 

The UNIQUAC (Universal Quasichemical) equation of Abrams and Prauznitz 

(ref. 3) represents a significant improvement over the Wilson equation. 

The corresponding group contribution method is called UNXFAC (UNIQUAC Fun- 

ctional-Group Activity Coefficients) (ref. 4) : 

In c = qs 1 
i 

- in cz;ta$$s) - 
t$$u 1 (10) 

PSEUDO-LATTICE GROUP CONTRIBUTION MODELS. 

The most widely applicable statistical group contribution methods are still 

based on rigid or free-volume pseudo-lattice models (ref. 5). 

The random-mixing model. The Guggenheim rigid-lattice model in the random 

mixing approximation (ref. 6) is the simplest group contribution model founded 

on statistical thermodynamics. According to this model, in the group-surface- 

interaction version (refs. l-71, the configurational Gibbs energy Gc*dis is given 

(11) 

where A is the total intermolecular surface, a, is the s-type surface 

fraction, and g$is is the interaction energy per surface unit between s- and t- 

surfaces. Equation (11) is applicable to nonpolar systems only, the quantities 
dis 

Of gst representing "dispersive" interchange Gibbs energies. 

Quasichemical models. Weak orientational effects in mixtures can be accounted 

for by means of Guggenheim's quasichemical approach (ref. 1). 
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The configurational Gibbs energy Gc9quacis given by an equation similar to 

equationtll) 

Gc’quac = $ (zsXsg;Jact $2, xsx+_ gz;ac 1 (121 

the random contact surfaces asbeing-replaced by the quasichemical quantities 

XS. 
The latter are obtained by solving the system of quasichemical equations 

in which the main parameters are the Boltzmann factors exp -gst quac/zkT . 

In the classic theory, molecules are forced to occupy the sites of a 

particular lattice. 

However, the assignment of contact points is arbitrary and meaningless and can 

be avoided by using the group-surface-interaction version of the theory (ref.11 

The coordination number z is a very crude representation of non-randomness. 

The random-mixing equations are obtained for z =a. 

The major shortcomings of the classic quasichemical approach are: 

a) the entire interchange energy of any given contact is assumed to generate 

non-randomness to the extent expressed by z; 

b) z is assumed to be the same for all the contacts. 

A physically more realistic approach should take into account a dispersive, 

random, contribution for every contact, possibly supplemented by an electrosta- 

tic, non-random contribution. A simple extension of the quasichemical theory is 

DISQUAC, the "quasichemical" model (ref. 51. 

The DISQUAC model, In DISQUAC, the same type of dispersive contribution 

supplements the quasichemical expressions. The configurational Gibbs energy Gc 

of the system is the sum of the two terms given by equations (11) and (12): 

dis 
: &&as% gst + 

x x gquac ) 
s t st 

(131 

The surface fractions being constant, at a given composition Xi , the 

quasichemical contact surfaces X, obtained by maximizing the configurational 

partition function (ref. 1) are the same as in the classical theory. Each 

contact(s,t), either polar or non polar, is thus characterized by a set of dis- 

persive interchange coefficients, C$jsl , and the polar contacts by an additio- , 
nal set of a quasichemical interchange coefficients, C~~~~ and the coordination 

number z. The excess functions, molar excess Gibbs energy, GE, and molar excess 
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enthalpy, HE, each contain a dispersive and a quasichemical term which are cal- 

culated independently and then simply added together: 
E dis 

GE = G,Eomb t Girlt 
E,quac 

t Gint (14) 

HE= H 
E,dis + HE,quac 

(15) 

For a binary system, Gk,,dRT= x, In (9,/x,) t x2ln @/x2) is the Flory-Hug- 

gins combinatorial term, pi = rixi /(r, x,t r2x2f is the VO~UW fraction, Xi is 

the mole fraction and rf is the total re,ative molecular volume of component 

i(i=l,Z) 
E,dis 

The Gint and H 
E,dis 

terms are given by 

E,dis 
G. ,nt = $x1 + q 2 x2$ f, g;is 

and 
E,dis 

H = fq, xl+ q2 x2)~,~2 h;lS 

where 
dis 

912 =. - &Qzs,- as* )(a,,- at2) g;is 

and 

hdis = 
12 - ;&?$a,,- a,2 f(atl-~t2) h;;s (191 

116) 

(17) 

(18) 

@siis the molecu,ar surface fraction of surface type s on a molecule of type 

7, qi, is the total relative molecular area of a molecule of type i and 

& =-qixi/(qlx,tq2x2) is the surface 

(i=l,2). 

The dispersive excess molar chemical 
E,dis = 
int,i 

GE,quac 
int 

and HE,quac are given by 

GE,quac = 
'lpint,l 

E,quac 
int EPquact x2 jAint,2 

where 

fraction of component i in the mixture 

potential of component i is 

(20) 

the known quasichemical equations 

(21) 

E,quac 
P tnt,i = z qilf;sasiln (Xsasi/Xsi a,) i i = 1,Z (22) 

is the quasichemical excess molar chemical potential of component i, and 
,,E,quac 

= t (9, xl + 92 x2L&Zt[Xs Xt- ( ~l~s,~tl+~2~~2~t2~~st~~~ac (23) 

‘1 st = exP[ - g;;aC/zRT) 
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The quantities X, and X,are obtained by solving the system of aequation 

( k is the number of contact surfaces): 

x, (x, +.CtXt st) =as (24) 

X, and X+i (i=l,Z) are the solution of the system of eqns.(24) for xi = 1 (pure 

component i). The temperature dependence of the dispersive or quasichemical gst 

parameters has been expressed by a three - constant equation of the type: 

gst (T)/RT = Cst,l + Cst,2 [rf/T)]- 1' + ,CSt,S [ln(i"/T) - (P/T) t 1] (25) 

where f= 298.15 K is-the scaling temperature. The enthalpy of interchange, hst 

and the heat capacity of interchange, $,st, are then given by: 

hst (T)/RT = C st,2 (P/T) - C&&P/T) - l] 
and 

5 ,st 'k = C&,3 

the latter being assumed to be independent of T. 

quantities termed "interchange coefficients". 

The interchange coefficients are not constant for 

homologous series. 

A correlating equation of the type: 

(26) 

(27) 

C 
st,i 

are dimensionless 

the first members of a 

0 

Cst,l = Cst,l ( ’ + hefJgt,l + ni?&t,l+ e-e ) (1 = 132) (28) 

has been used quite frequently for open-chain molecules. 

In eqn (281, Cit,, are the coefficients of the base compound, ozt ,, are 
, 

alkyl-group increments and n represent the number of carbon atoms in the 

different "levels" around the functional group: e, denoting ethyl, p, propyl 

and so on (see Fig.1 for a bivalent group, such as carbonyl, CO). 

One of the advantages of DISQUAC is the use of a single coordination number z 

in calculating the quasichemical term. This permits application of the model to 

mixtures containing groups of different polarities. 

The degree of non-randomness is expressed by the relative amount of quasi- 

chemical to dispersive terms. If both groups ( s and t) are non polar, then 
dis 

the contact (s,t) is characterized by the dispersive coefficients Cst , only, 
quac , 

all Cst,l =O. 

The "reference" value chosen for the coordination number is z = 4, the same as 

in our previous applications of DISQUAC (refs. 8-g). 
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Fig. 1 
are on 
np = 0 

Schematic representation of n-alkanone molecules. In Z-propanone, 
y two C atoms which occupy "level" m, and levels e and 
. In Z-butanone, n e = 1, nP = 0; in 3-heptanone, ne = n E are empty - 2; etc. 
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Fig. 2. Comparison of theory with experiment for the molar excess Gibbs energy 
G and the partial molar excess Gibbs energiesp! at 323.15 K, and the molar 
excess enthalpy HE at 298.15 K of 2-propanone (11 t cyclohexane (2) versus x1, 
the mole fraction of 2-propanone. Full lines, predicted values; points, experi- 
mental results, ,GE and,u: (ref. 20); , HE (ref. 191. 
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RECENT ORIGINAL WCIRX 

The need to use ~IS~AC clearly appeared for the first time during a preli- 

minary study of mixtures containing alcohols (refs. 10-12). 

A careful study of n\-alkarrone t n-alkane mixtures (ref. 13) showed that DISQUAC 

gives a much better representation of the experimental data by the cTassic 

method using z = 10 (refs. 14-15). The CCI/CH$J~ CH3 contact were characterized 

bytwo sets of interchange coefficients, quasichemical and dispersive (see 

below). 

The importance of DISQUAC is especially evident in mixtures containing three 

or more types of groups of different polarities. For example,. n-alkanaltcyclo- 

hexane systems (ref. 8) were regarded as possessing three types of surface: (i) 

type-a, aliphatic (CH3- or -CH3- groups, which are assumed to exert the same 

force ficeld); type f, formyl (-CHO); and (iii) type c, cyclohexane fC6Hl3)). 

These surfaces generate three pairs of contacts: (a,f),(c,f) and (a,c). The 

interchange parameters for the (a,f)- contact have been adjusted previously 

(refs. 16-17) using the experi~ntal GE and WE values of n-alkanals t n-alkanes. 

It was necessary to apply tl.e quasichemical approximation of the theory, with 

a coordination number z af= 4 in order to reproduce the shape of the GE and HE 

curves. 

We expected that the fc,f)- contact could also require a quasichemical 

treatment with zcf= 4. Cyclohexane t n-alkane mixtures were treated in the zero 

approximation of the theoretical model as non-polar systems (zac=w), In the 

classic Guggenheim-Barker quasilattice model z is assumed to be the same 

for all the contacts. This is, of course, not the case for systems such as 

n-alkanals t cyclohexane, which consists of one polar group, f, and two non 

polar groups, a and c. To overcome the difficulty one should determine the 

interchange parameters of the non-polar (a,c)-contact quasichemically, using 

Z ac= 4, as for the polar contacts (a,f) and (c,f). The classic model could 

then be applied, but za; 4 for cyclohexane + n-alkane would be unjustified. 

We applied DISQUAC (ref. 8), considering the (a-f)- and (c,f )- contacts as 

entirely quasichemical and the (a,c)-contact as entirely dispersive. A similar 

treatment was used to describe 1-chloroalkane t cyclohexane systems (ref. 9) , 

Below we report briefly on very recent, yet unpublished, applications of 

DISQUAC to several polar falkanones or chloroalkanes) t n-alkane or t cycloal- 
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kane systems. 

n-alkanone systems 

The n-alkanone + n-alkane mixtures were regarded as possessing two types of 

surfaces: (i) type a, aliphatic (CH 3- or -CH2- groups); (ii) type k, carbonyl 

(CO group); the n-alkanone + cyclohexane systems were regarded as possessing 

three types of surfaces: (il type a; (ii) type k and (iii) type b, cyclohexane 

(C6H12). The DISQUAC 

n-alkanone t n-alkane 

by eqn. (281, the base 
Cdis 
ak,l 

= 3.044 ( 1 

coefficients Ccl:', 
, 

and CZai have been determined for 
, 

Cdis 
ak,2 

= 4.065 ( 1 

c;;a; = 5.934 ( 1 
, 

$a; = 9.029 ( 1 
, 

systems by Kechavarz et al.(ref. 181 and represented 

compound being 2-propanone: 

t 0.12 ne + 0.06 np ) 

t 0.24 ne + 0.12 np ) 

- 0.12 ne -10.03 np 1 

- 0.22 ne - 0.07 np 1 

We extended the treatment to n-alkanone + cyclohexane mixtures. GE and HE da- 

ta were available in the literature for 2-propanone and 2-butanone only. 

We measured HE of cyclohexane t 2-pentanone, t 3-pentanone, + 2-hexanone and 

t 3-hexanone (ref. 191. The GE values reported by Crespo Colin et al.(ref. 20) 

were selected for calculating the dispersive energy coefficients, C dis = 3.182 

and Cils2 
o bk,l 

= 4.294, of 2-propanone assuming that IZ~~~~'~= CcliaCy . 

DISQUiC reproduces GE and HE of 2-propanone t cyilohexane'quite well over 

the whole concentration range (fig. 21. Using the same parameters, the model 

a fairly good prediction of the solid-liquid equilibrium phase diagram 

(ref. 21) and a metastable liquid-liquid miscibility gap (fig. 3). 

Assuming that the alkyl-group increments for cyclohexane are the same as for 
R R 

n-alkane,(Tbk,, = oak,,, we calculated G 
E 

and HE for higher n-alkanones t 

cyclohexane. 

In fig. 4 we have represented the equimolar values of GEand HE of 2-alkanones 

t cyclohexane as a function of the number n of C atoms in the alkanone. The 

agreement is quite satisfactory and shows that the properties of n-alkanone t 

cyclohexane systems can be calculated with the coefficients of n-alkane systems 

by slightly increasing the dispersive coefficients of the base compound. 
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Fig. 3. Solid-liquid and metastabie liquid-liquid phase diagram of Z-propanone 
t cyclohexane. Lines, predicted curves; points, experimental results fref.21). 

I 

3 4 5 6 7 

n 

Fig. 4. Comparison of theory with experiment for the molar excess Gibbs energies 
GE and molar excess enthalpies HE at 298.15 K and xl = 0.5 of 2-alkanone (1) t 
cyclohexane (2) mixtures versus n , the number of C atoms in theE2-alkanone. 
Full l,$~., predicted values; pol'nts, experimental results,*, G (refs 20,321, 
A, H (ref. 24). 



55 

TABLE I 

Enthalpies of solution at infinite dilution, HOP, and 298.15 Kof P-afkanones 

in cyclohexane: comparison of direct experimental results(exp1 (ref. 23) with 

values calculated (talc) using the DISQUAC model. 

Z-Alkanone 

2-propanone 

"aqcalc H? -..I 
I ,exp - 

lo3 moi-' lo3 moi-' 
11.01 9.74'0.10 

Z-butanone 8.58 8.20+0.12 

Z-pentanoffe 7.48 7.11fff.09 

E-hexanone 7.24 6.75* O.lU 

Z-heptanone 6.98 6.80t0.09 

As an additional and very sensitive test, we compared DISQUAC predictions for 

properties at infinite dilution with the available experimental data. There is 

only one measure~nt of activity coefficients at infinite dilution for this 

class of systems, viz of 2-butanone in cyclohexane lny 
l,exp 

=1.305 at 350.8 K, 

obtained by differential ebulliometry (ref. 22). The calculated value is 

lnY1 talc 
= 1.308. Fortunately, the accurate data on the enthalpies of solu- 

tion'at 298.15 K of Z-alkanones in cyclohexane determined by Della Gatta 

et al.(ref. 23) are available. In Table 1, we compare the experimental data 

with our calculations. The agreement is better than expected, the model using 

only parameters fitted to represent the properties of mixtures. 

Gycloalkanone systems. 

The calculated GE, and HE curves for cycloalkanones Icyclopentanone, 

clohexanone, cycloheptanone or cyclooctanone) f cycloalkane fcyclopentane 

CY- 

Ol- 

cyclohexanel or t n-alkanes (C, - C 161, mixtures, show that agreement 

with the experimental data (refs. 24-26) is excellent over the entire concen- 

tration range (fig. 5) when the values in Table 2 are used for the dispersive 

and quasichemical parameters. The quas~chem~~al interchange energy coef- 

ficients Ciis, for the cycloalkane/carbonyl contact are the same for 

mixtures of ~~~loalkanones with cyclopentane and cyclohexane, assunling for 
dis dispersive interchange energy coefficients Cbk '( constant values for the 

four cycloalkanones investigated. The cyclohexifne coefficients differ slightly 

from, whereas"the cyclopentane coefficients are much smaller than, the n-alkane 



T 

3lxlo< 

woo 3 
az 
e 

2000 w 

:! 

Ill'_ 
500 a_ 

1OaO 

0 0.2 0.4 0.6 0.6 1.0 

Xl 

Fig. 5. Comparison of theory with experiment 
GE, the partial molar excess Gibbs energies 
HE at 298.15 K of cyclohexanone (1) t cycle exane (2) versus x1, the mole fracti- I 
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A, HE (ref. 24). . 
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Fig. 6. Comparison of theory wit: experiment for ttme molar excess Gibbs energies 
G and molar excess enthalpies H at 298.15 K and xl = 0.5 of cycloalkanone (1) 
+ n-alkane (2) mixtures versus m, the number of C atoms in n-alkane. Full lines, 
predicted values; points , experimental results (ref. 24):0, cyclopentanone; 

Ir.9 cyclohexanone. 
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coefficients. Other compounds behave similarly (ref. 27). 

The predicted dependence of HE at 298.15 K and xl= 0.5 on m, the number of C 

atoms in the n-alkane, is represented in fig. 6 and compared with experimental 

results (ref. 24). It appears that for mixtures of cyclopentanone or cyclohe- 

xanone the experimental HE data for increasing values of m are higher than the 

calculated data. This extra-endothermic contribution may be attributed to des- 

truction of the orientational order in n-alkanes during the process of mixing 

with more or less globular molecules (ref. 28). 

TABLE II 
dis 

Interchange energy coeffici,ents, Csk ,, _ i , 
and CztaC, for cycloalkanone + n-alka- 

, 
ne or + cycloalkane mixtures s = 5 or 6 for cycloalkane contact (b) or a for 

contact (a); (b-5 means cyclopentane; b-6 means cyclohexane) 

cycloalkanone 
dis 

S 
CskJ 

Cdis quac quac 
Sk,7 csk,l csk,2 

cyclopentanone a 3.61 6,50 5.41 6.40 

cyclohexanone II 

cyclopentanone b-5 

cyclohexanone II 

cycloheptanone II 

cyclooctanone I, 

cyclopentanone b-6 

cyclohexanone II 

cycloheptanone II 

cyclooctanone II 

Polychloroalkane systems 

#I I, 4.95 5.40 

2.80 5.36 5.41 6.40 

I, II 4.95 5.40 

II I, 4.60 4.48 

M II II I, 

3.70 6.40 5.41 6.40 

I, I, 4.95 5.40 

I, I, 4.60 4.80 

II II II II 

The purpose of this study (ref. 29) was to examine in terms of DISQUAC the 

thermodynamic excess functions, G E E , and H , of binary mixtures of n-alkanes 

or cycloalkanes with the following classes of chloroalkanes: 

A) l- chloroalkanes, CH (CH 1 
3 2 m-2cH2c1 

B) dichloromethane, H,CCl, 

C) l,l-dichloroalkanei, Ci3(CH2 )m 2CHC1 
2 

D) trichloromethane, HCCl, 

E) l,l,l- trichloroalkane:, CH (CH 1 
3 2 m-2 

ccl3 

F) tetrachloromethane, CC1 
4 
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These systems were regarded as possessing three types of surface:(i), type a, 

aliphatic (CH3 -or - CH2 - groups), (ii), type b, cyclohexane, and (iii), type 

d, chlorine (-Cl group). 

We first noted the relatively small deviations from ideality in CC14 t alkane 

mixtures. Therefore, it was tempting to use the dispersive interchange energies 

of the CC1 - 
4 

alkane contact when calculating the dispersive contribution of 

the Cl atoms in polar chloroalkane mixtures. 

In 1-chloroalkanes, the electrostatic part, due to the C-Cl bond dipole, 

predominates, the dispersive contribution being almost negligible (fig.7). 

In 1,l - dichloroalkanes and l,l,l-trichloroalkanes the dispersive contribu- 

tion is larger and the quasichemical interchange coefficients t?lsuac decrease as 
ad,1 

the number of Cl atoms increases. In CC1 
4' 

the quasichemical coefficients are, 

of course, zero. This regular decrease in the interchange energy in 

coefficients (fig. 8) is the most interesting result of our study. 

The molecular dipole moments of the components in the series H3CCl (1.87 D)> 

H2CCl2(1.60 D)>HCCl3(1.01 D)>CC14 (0.00 Dl decrease in the same order as the 

Cqiaf(fig. 8). Another result which deserves attention is the behavior of HCC13 

as bpposed to h3.CC13. 

The GE and H Ecurves indicate somewhat stronger orientation in HCC13 , proba- 

bly due to more favorable steric conditions, than in ;SCCl3 , but there is no 

evidence for specific C-H... Cl H-bond type interaction in HCC13tref. 301, other 

wise the interchange energy coefficients would be quite different. The same 

conclusion applies to l$CCl,. 

CONCLUSIONS 

The present investigations prove that DISQUAC is superior in several respects 

to the classic quasichemical method. 

1. It better reflects the nature of molecular interactions by taking 

an specifically into account a dispersive term, always present, and 

electrostatic term, present in polar systems. 

2. It enables groups with different polarities to be handed by the model. 

3. It reproduces the experimental data better, including liquid-liquid equ 

bria and properties of very dilute solutions. 

4. The interchange coefficients have a better physical significance than in 

ili- 
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Fig. 7. Comparison of theory with experiment for the molar excess Gibbs energy 
GE and partial molar excess Gibbs energiesp! at 303.15 K (b) and molar excess 
enthalpy HE at 298.15 K(a) of 1-chlorobutane (1) t n-heptane (2) versus xl, the 
mole fraction of 1-chlorobutane. Full lines, predicted values; points, experi- 

mental results (refs. 33-34); Gsis and Hiis , calculated dispersive contribution. 
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Fig. 8. Quasichemical interchange coefficients CSai (1 = 1,2) of polychloro- 
alkane t n-alkane mixtures versus n, the number of'C1 atoms in the Ccl, group 
A, ?$a; 

, 
; 0 , qy; 
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other group contribution method. This can be illustrated very well by comparing 

the dependence of the energy parameters of the -CCln/CH2 groups on the number 

n of Cl atoms for DISQUAC and UNIFAC. 

The UNIFAC parameters reported in the most recent collection (ref. 31) show 

no systematic trend with n (Table 3). - 

TABLE III 

UNIFAC group interaction parameters, amn k for the chloroalkane/alkane 
, 

contacts (ref. 311. 

Group 

cc1 
a12,1 a12,2 a21,1 a21,2 

246.3 0.2579 -67.33 -0.6791 

ccl2 101.2 -0.8471 12.87 0.2650 

ccl3 103.1 -0.1245 -35.46 -0.1233 

ccl4 -12.65 0.0452 27.88 -0.1656 

TABLE IV 
dis 

Interchange energy coefficients, Cad , , and Cad , 
, 

q”y (1 = 1,2) for contact (a,d) 

(a, aliphatic, d, chlorine) as function of the number n_ of Cl atoms in 

chloroalkane. 

Group 

CC1 

ccl2 

ccl3 

ccl4 

Cdis 
C 
dis 

ad,1 ad,2 
Cquac 
ad,1 

Cquac 
ad,2 

0.093 0.180 2.342 3.752 

,I 11 1.040 1.960 

0 11 0.203 0.413 

1, II 0.000 0.000 

OISQUAC uses the same number of coefficients per contact, but all the 

dispersive coefficients are constant, and the quasichemical coefficients 

decrease with decreasing polarity, being zero for the nonpolar CC141Table 4 and 

fig. 8). 
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